Structure of Thought: Part 1

This is part of my Structure of Thought series. See also Part 2.

Dual-Mind Theory

The mind can be split into two main parts: conscious and unconscious.

The conscious part is tiny and weak. Conscious thoughts are the ones you percieve. They move slowly, and you can generally only have a few of them at a time. Studies show that a person can generally hold between five and nine items in short-term memory at once.

But we are all doing more than 9 things simultaneously most of the time. We may be balancing ourselves as we walk down the street, holding a cellphone to our ear, having a complex conversation, and looking around as we cross the street, all at the same time. Only one part of this scene – the social content of the phone conversation – is likely to actually fill space in our short-term memory. So how are we doing all this at once?

The unconscious part, in contrast, consists of all those computations and thought processes which cannot be consciously percieved. Compared to the conscious mind, it is incredibly powerful.

The unconscious mind takes all the sensory input you recieve, does a massive amount of processing and memory comparison, and then sends the analyzed information to your conscious mind in the forms of feelings, impressions, urges, and emotions. We all feel these emotions and impressions. Most of us do not understand the computation that goes on behind the scenes to generate them.

The unconscious is a fascinating thing. It’s power makes it a necessity in getting anything done. At the same time, it is faulty and biased. In some ways, it could even be said to be insane.

In The Zone

In some sports, there is mention of a player being “in the zone”. Everything he does works. His shots are perfect and his play is brilliant. It is as though his skill level just jumped.

This happens when the player mostly deactivates his conscious mind and allows the much more powerful unconscious to drive his actions. He simply acts “on instinct” – without filtering his decisions using the conscious mind. This improves his performance because he is running on purely unconscious intelligence, which, if properly conditioned, is much more powerful than conscious intelligence.

Calculating Power vs Recall Power

There is more than one way to be intelligent. Intelligence, as we have seen, is at its core the ability to predict the future. On the surface there seems to be only one obvious way to do this: observe the world, model the world in simulation, and then run the simulation into the future, step by step.

This method is similar to basic machine intelligence. A computer program for playing tic-tac-toe, for example, works by taking each possible move at its current position, looking at every possible counter to that move, then every counter to those moves, right down to the end of the game. It then chooses the next move which is knows will lead to an end-state where it does not lose.

This works well for small problems like tic-tac-toe, because there are only thousands of possible moves. Modern computers do millions or billions of operations per second, so this number is manageable.

But consider a game like chess, with thirty to forty possible moves from every position, and tens of moves over the course of the game. The number of board positions is estimated at at least 10^43 – that’s a one with 43 zeroes after it. This is far too much complexity for any existing computer to handle by looking at every possible move and counter-move to the end of the game. Such computations would take so long that the human player would be long dead of old age before the chess computer made its first move.

The solution for computers are complex, but the most essential part is that the computer only looks a set number of moves into the future – usually between 3 and 10. This limits the number of calculations it needs to make. If the game isn’t finished at the end of its searches, the computer evaluates the board position at the end of each of the millions of possible chains of moves and counter-moves. It then makes the move that takes it towards the best final board positions.

This strategy is very workable, but it is not infallible the way that tic-tac-toe programs are. You can never win a game of tic-tac-toe against a computer, but computer chess programs can be beaten.

What about humans? Chess masters have a good record against even the most advanced chess machines. But chess masters are not known for thinking through millions of possible moves and counter-moves consciously.

Humans can compete against computers at chess because, while we are very bad at working through possible moves and counter-moves, we are very good at recalling board positions that we have seen before. This is because organic intelligence is based not on massive calculating power, but on massive recall power.

Whereas machines are designed for massive serial computational ability, organic brains are better adapted to massive parallel recall ability. Computers do difficult calculations lightning fast, one after another after another. They have one processing unit that is incredibly fast.

In contrast, organic intelligence is based on having many slow processing units – brain cells – which work slowly but all at the same time. Instead of looking through our memories one by one using one “chip”, for example, every memory-storing cell in our brains runs its own comparison, all at the same time. Those that find a match light up, setting off a chain reaction of neural activity which eventually propagates up to the neocortex and makes you feel like you were just reminded of something.

As an example, consider an event which happens many times each day to all of us: you see a human face. In an instant and without effort, you know whether you recognize the person or not. If you do recognize the person, you usually know exactly who it is. All your memories concerning that person become instantly available.

This seems easy to us. To today’s computers, this is an impossible feat. A computer attempting this feat would need to take the face it saw, and sequentially search through all the faces in its memory banks one by one, looking for a match among thousands of possibilities. You, however, can do it instantaneously, because althought the brain cells which store your memories are not fast processing units, they all work at the same time. This is the nature of organic intelligence.

This is also why competing with a chess machine requires extensive experience. For recall power to work, a person must have something to recall. This is why humans require practice in order to learn a new skill.
This is part of my Structure of Thought series. See also Part 2.

One thought on “Structure of Thought: Part 1

  1. Patrik Jurica

    Hello, exactly the same thought came to my mind yesterday, but in much shorter form :-) Because of this great power of the unconscious, I have decided to prefer using my feelings and emotions for decesion making in my everyday life. I have hypothesis too. Maybe the level of excitment that comes along with the feeling provides the information about validity of that information or in other words about how much this information is backed up by your experience.

Leave a Reply

Your email address will not be published.